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This paper introduces a frequency-domain method of structural damage identi"cation. It
is formulated in a general form from the dynamic sti!ness equation of motion for a structure
and then applied to a beam structure. Only the dynamic sti!ness matrix for the intact state
appears in the "nal form of the damage identi"cation algorithm as the structure model. The
appealing features of the present damage identi"cation method are: (1) it requires only the
frequency response functions experimentally measured from the damaged structure as the
input data, and (2) it can locate and quantify many local damages at the same time. The
feasibility of the present damage identi"cation method is tested through some numerically
simulated damage identi"cation analyses and then experimental veri"cation is conducted
for a cantilevered beam with damage caused by introducing three slots.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The existence of structural damage within a structure may lead to changes in the dynamic
characteristics of the structure such as vibration response, natural frequency, mode shape
and modal damping, which, in turn, can be used to detect, locate and quantify the damage.
Thus, a number of structural damage identi"cation methods (SDIMs) have appeared in the
literature.

The existing SDIMs can be classi"ed into some groups depending on what experimental
data are used in the methods. They include: changes in the modal data such as natural
frequencies [1], mode shapes [2], and damping ratios [3]; strain energy [4]; transfer
function parameters [5]; #exibility matrix [6]; residual forces [7]; wave characteristics [8];
mechanical impedances [9]; and FRF-data [10]. As discussed by Banks et al. [11], the
modal-data-based SDIMs may have some shortcomings: the modal data are indirectly
measured test data and they could be contaminated by measurement errors as well as
modal extraction errors. Furthermore, the completeness of modal data cannot be met in
most practical cases because they often require a large number of sensors. It can be found
from a thorough literature survey that most SDIMs have been derived from "nite element
method (FEM)-based eigenvalue problems. As a drawback of FEM, very "ne meshes
should be used to obtain satisfactory dynamic solutions, especially at high frequency. Thus,
it is desirable to develop an SDIM by which the shortcomings incurred by the use of modal
data and the "nite element model can be overcome.

The FRF-data and the spectral element model can be considered as alternatives to the
modal data and the "nite element model, respectively. Because the FRF-data are measured
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directly from structures, they will be free from errors such as modal extraction errors.
Therefore, the FRF-data seem to be more reliable than modal data. A major advantage of
using FRF-data over modal data is that the FRF-data can provide much more damage
information in a desired frequency range than modal data because the modal data are
extracted mainly from a very limited number of FRF-data around resonance [12]. In
contrast to the classical FEM, the spectral element method (SEM) is often justi"ably
referred to as an exact analysis method in the literature [13, 14] because it provides
extremely accurate dynamic solutions. The exact dynamic element sti!ness matrix, often
called &&spectral element matrix'' in the literature, is used in SEM. The exact dynamic
element sti!ness matrix is formulated from the frequency-dependent exact shape functions
satisfying governing equations. Because the dynamic element sti!ness matrices are
sti!ness formulated, they can be assembled in a completely analogous way to that used
for the conventional FEM to form the dynamic sti!ness matrix (DSM) for a complete
structure. The di!erence is that it is done as part of the do-loop over all the frequency
components.

In this paper, motivated by the above beautiful features of FRF-data and the exactness of
SEM, a frequency-domain method of structural damage identi"cation is derived from the
dynamic sti!ness equation of motion of a structure and then applied to beam structures. In
the present SDIM, the externally applied excitation forces and the FRF-data measured
from the damaged structure are used as the input data.

2. DAMAGE IDENTIFICATION ALGORITHM

The dynamics of a structure in the intact state can be represented by the dynamic sti!ness
equation of motion as [14]

[S(�)]�U(�)�"�P(�)�, (1)

where [S] and �U� are the dynamic sti!ness matrix and the spectral components of nodal
degrees-of-freedom vector (simply, nodal d.o.f.s) of the structure in the intact state
respectively. Note that the dynamic sti!ness matrix [S] is frequency-dependent. The vector
�P� represents the spectral components of the externally applied nodal forces vector
(simply, nodal forces).

Now, assume that the same structure gets damaged, but still subjected to the same nodal
forces as in equation (1). Then, the dynamics of the structure in a damaged state can be
represented by

[S� (�)] �U� (�)�"�P(�)�, (2)

where [S� ] and �U� � are the dynamic sti!ness matrix and nodal d.o.f.s vector of the structure
in a damaged state respectively.

In this study, the matrix [S] is considered as the known quantity because it is so
determined that equation (1) represents the re,ned structure model for the intact structure.
By the word &&re"ned'', we mean that the experimentally measured and analytically
predicted structural dynamics characteristics are in good agreement. Similarly, the vector
�U� � is also considered as a known quantity because it will be measured directly from the
damaged structure. However, the dynamic sti!ness matrix in the damaged state [S� ] is not
known in advance because it will depend on the not-yet-known current state of damage.
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Assume that the matrix [S� ] can be expressed by

[S� (�)]"[S(�)]#[�S(�)],
(3)

where [�S] is the perturbed dynamic sti!ness matrix generated by the presence of damage.
Substituting equation (3) into equation (2) gives

�P(�)�![S(�)]�U� (�)�"[�S(�)]�U� (�)�. (4)

The nodal forces vector �P� can be written in partitioned-vector form as

�P(�)�"�
Pm (�)

Ps (�) �"�
F(�)

0 � , (5)

where �0� designates the zero vector. Then, in a manner compatible with equation (5), the
vector �U� � can be partitioned into a set �U� m� termed &&master'' nodal d.o.f.s, which are to be
retained, and a set �U� s� termed &&slave'' nodal d.o.f.s, which are to be eliminated to reduce
the number of nodal d.o.f.s, as follows:

�U� (�)�"�
U� m(�)

U� s(�) � . (6)

Similarly, the matrices [S] and [S� ] can be partitioned as follows:

[S(�)]"�
Smm(�) Sms(�)

Ssm(�) Sss(�) �, [S� (�)]"�
S� mm (�) S� ms(�)

S� sm (�) S� ss (�) � (7)

Then it follows that

[�S(�)]"[S� (�)]![S(�)]"�
S� mm!Smm S� ms!Sms

S� sm!Ssm S� ss!Sss � . (8)

Substituting equations (5), (6), and (7b) into equation (2) may yield the relationship between
�U� � and �U� m� as follows:

�U� (�)�"[T� (�)]�U� m (�)�, (9)

where [T� ] is the &&co-ordinates'' transformation matrix for the structure in a damaged state,
which is de"ned by

[T� (�)]"�
I

t� (�)� (10)

with

[t� (�)]"![S� ss]��[S� sm]. (11)

In equation (10), [I] denotes the identity matrix. After a lengthy manipulation, the matrix
[T� ] can be rewritten in terms of [T] (transformation matrix for the structure in the intact
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state) and [�T] (perturbed transformation matrix generated by the presence of damage) as
follows:

[T� (�)]"[T(�)]#[�T(�)], (12)

where

[T(�)]"�
I

t(�)� , [t(�)]"![Sss]�� [Ssm] (13)

and

[�T (�)]"�
0

�t(�)�, [�t(�)]"[Css][t]#[t][Csm]#[Css][t][C��
], (14)

where the following de"nitions are used:

[Css]"![Sss]��[�Sss] ([I]#[Sss]��[�Sss])��, (15)

[Csm]"[Ssm]��[�Ssm].

Substituting equation (12) into equation (9) and its result into equation (4) gives

�P�![S][T]�U� m�"([S][�T]#[�S][T]#[�S][�T])�U� m�. (16)

Applying equations (5), (7a), (8), (13a), and (14a) into equation (16) and then neglecting some
small terms may yield

�F(�)�![X(�)]�U� m(�)�"[Y(�)]�U� m(�)�, (17)

where

[X(�)]"[Smm]![Sms][Sss]��[Ssm] (18)

and

[Y(�)]"[T]�[�S][T]. (19)

One may note that the e!ects of damage appear only on the right-hand side of equation (17)
through the perturbed dynamic sti!ness matrix [�S].

The &&inertance''FRF is de"ned as the ratio of the acceleration to the applied force as [15]

A
��

,!��
U�

��
F

�

or �Am�,!���
U� m
F � , (20)

where the subscript i denotes the components of the vectors �F�, �U� m�,and �Am�. By using
the de"nition of equation (20), equation (17) can be rewritten as

���#

1

��
[X(�)]�Am (�)�"!

1

��
[Y(�)]�Am (�)�, (21)

where ��� is the nodal forces locator vector, which has unit values only at the components
corresponding to non-zero nodal forces.



E

D)E(1E −=

(b) 

E 

DAMAGE 

(a) 

Figure 1. Example of "nite structure element with damage: (a) true damage state, and (b) its equivalent
representation in terms of e!ective uniform damage magnitude D.
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For a complete intact structure, the dynamic sti!ness matrix [S] can be assembled from
the dynamic element sti!ness matrices as follows:

[S(�)]"
�
�
���

[Lk]�[sk(�)][Lk], (22)

whereN is the number of "nite elements and [s
�
] is the dynamic element sti!ness matrix for

the kth element. The matrix [L
�
] is the locator matrix, which locates the components of [s

�
]

into [S] for the assembly. Similarly, the perturbed dynamic sti!ness matrix [�S] can be
obtained from

[�S(�)]"
�
�
���

[Lk]�[�sk(�)][Lk], (23)

where [�s
�
] is the perturbed dynamic element sti!ness matrix for the kth element. As shown

in Figure 1, assume that a small "nite structure element having non-uniform damage inside
can be represented as the &&e!ective'' "nite structure element now having uniform damage
through the whole structure. Then, the perturbedmatrix [�s

�
] can be approximately related

to [s
�
] as follows:

[�sk(�)]:D
�
[sk(�"0)]"D

�
[kk], (24)

where D
�
and [k

�
] are &&e!ective'' uniform damage magnitude and conventional "nite

element sti!ness matrix for the kth element, respectively. Numerical veri"cation of equation
(24) is given for the beam element in the following section.

By using equations. (19), (23) and (24), the right-hand side of equation (21) can be
expressed as

!

1

��
[Y(�)]�Am(�)�"!

1

��
[T]��

�
�
���

[Lk]�[kk][Lk]D��[T]�Am� (25)

or

!

1

��
[Y(�)]�Am (�)�"[�(�)]�D�, (26)

where

[� (�)]"[�1 (�)�2 (�)2�N (�)],

�D�"�D
�
D

�2
D

�
� �

��k (�)�"!

1

��
([Lk][T(�)])�[kk (�)]([Lk][T(�)])�Am(�)�. (27)
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Replacing the right-hand side of equation (21) with that of equation (26) may yield a
set of linear algebraic equations in N unknown (e!ective) damage magnitudes D

�
as

follows:

[� (�)]M�N�D�N�1"�b(�)�M�1, (28)

where

�b(�)�"�� (�)�#

1

��
[X(�)]�Am(�)�. (29)

Equations (27) and (29) show that [�] and �b� are determined only from the dynamic
sti!ness matrix in the intact state [S], the nodal forces locator vector ���, and the measured
inertance FRF �Am�, and thus equation (28) does not require the dynamic sti!ness matrix in
the damaged state. The dimension of the matrix [�] is M�N, where M is the number of
&&master'' nodal d.o.f.s �U� m� and N is the number of "nite elements to be examined for
unknown damage magnitudes D

�
. Accordingly, the dimension of the nodal forces locator

vector ��� is M�1.
In equation (6), the nodal d.o.f.s at which neither the nodal forces are applied nor the

forced-vibration responses (i.e., inertance FRF) are measured are considered as the &&slave''
nodal d.o.f.s, whereas the other nodal d.o.f.s are considered as the &&master'' nodal d.o.f.s.
Thus, to vibrate the damaged structure, the nodal forces should be applied only to some of
the M nodes at which the forced-vibration responses will be measured. Accordingly, the
number of nodal forces is in general less than the number of &&master'' nodal d.o.f.s M. This
requirement can be readily met by applying an excitation force at a single node, for instance,
and then by measuring vibration responses at some pre-speci"ed nodes including the node
at which the excitation force is applied.

In general, the number of unknown damage magnitudes is much larger than the number
of measured nodal d.o.f.s (or the number of linear algebraic equations), i.e.,N'M. Thus, it
is required to derive more linear algebraic equations from equation (28) in order to make
the damage identi"cation problem well-posed. Otherwise, the use of a proper optimal
solution technique seems inevitable. One may note that equation (28) is valid for any
frequency �. This means that a di!erent set of linear algebraic equations in the same
N unknown damage magnitudes D

�
can be obtained from equation (28) by properly

choosing a di!erent value of frequency �. Thus, one can vary the excitation frequency � in
order to collect as many di!erent sets of linear algebraic equations as needed to form
a system of N linear algebraic equations as follows:

[�]
���

�D�
���

"�B�
���

, (30)

where

[�]
���

"

[�(�
�
)]

���
[�(�

�
)]

���
�

[�(�
�
)]

���

(31)
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and

�B�
���

"�
�b(�

�
)�

���
�b(�

�
)�

���
�

�b(�
�
)�

���
� (32)

where N"q�M. Equation (30) can be solved for N unknown damage magnitudes D
�
in

N "nite elements, which implies the location and quanti"cation of many local damages.
In summary, equation (30) represents an SDIM newly developed in this study. The

appealing features of the present SDIM are as follows:

(1) It is formulated from the dynamic sti!ness equation of motion.
(2) It requires the dynamic sti!ness matrix only for the intact state.
(3) It requires the forced-vibration responses (i.e., the inertance FRF) of the damaged

structure only as the input data.
(4) It can locate and quantify many local damages simultaneously.

3. APPLICATION TO THE BEAM STRUCTURE

3.1. EFFECTIVE DAMAGE MAGNITUDE

Consider a "nite beam element having local damages inside, as shown in Figure 1(a).
Because the location, geometry, and the severity of the damage are not known in advance
for most practical cases, it is almost impossible to assign a de"nitive representation for the
sti!ness at the site of damage. Thus, as shown in Figure 1(b), a simple, but rational approach
[11, 16, 17] is to represent the presence of damage by the degradation of Young's modulus
as follows:

EM "E(1!D), (33)

where E and EM are the Young's moduli for the intact and damaged states, respectively, and
D is the e!ective uniform damage magnitude through the whole element. The case D"0
indicates the intact state, while D"1 indicates the complete rupture of material due to
damage.

It is known that damages may give rise to certain non-linearities, for example, clearance
or bilinear sti!ness e!ects in systems with cracks.Most damages before the structural failure
are localized at very small spots within a structure rather than spread wide over the
structure. Furthermore, if the local damages are weak, the non-linearities will be very weak
and their e!ects will be con"ned to the zones very near the local damages. Thus, for most
local damages that are weak at the early stage of growth, one may assume that their
non-linearities can be neglected or, if needed, can be included into the e!ective damage
magnitude of equation (33) as the equivalent linearized e!ects.

3.2. DYNAMIC ELEMENT STIFFNESS MATRIX

The exact dynamic element sti!ness matrix for an intact "nite Bernoulli}Euler beam
element is given by [13, 14]

[s(�)]"
�EI

Ch c!1 �
s1 s2

sT2 s3� (34)
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with

[s1]"�
!��(Ch s#Sh c) !�Sh s

!�Sh s !(Ch s!Sh c)� ,

[s2]"�
��(Sh#s) !�(Ch!c)

�(Ch!c) !(Sh!s) � (35)

[s3]"�
!��(Ch s#Sh c) �Sh s

�Sh s !(Ch s!Sh c)� ,
where

s"sin�l, c"cos�l,

Sh"sinh �l, Ch"cosh �l
(36)

where EI and l are the bending sti!ness and length of the beam element, respectively, and
� is the wave number. The exact dynamic element sti!ness matrix for a damaged
Bernoulli}Euler beam element can be reduced from equation (34) by simply replacing
E with EM "E(1!D) as follows:

[s� (�; D)]"[s(�)]E"EM (37)

Subtracting [s� ] from [s] yields the exact perturbed dynamic element sti!ness matrix as

[�s(�)]
�	
��

"[s� (�)]![s(�)]. (38)

Expanding [�s]
�	
��

in the Taylor series with respect to D and neglecting the higher order
terms may yield the approximated perturbed dynamic element sti!ness matrix as follows:

[�s(�)]



��	

:D[s(�"0)]"D[k], (39)

where [k] is the conventional "nite element sti!ness matrix for the "nite Bernoulli}Euler
beam element [18].

The percent errors of the components of [�s]



��	

with respect to those of [�s]
	


are
illustrated in Figure 2 when the uniform damage magnitude is D"0)4 and the
length-to-thickness ratio of the beam element is l/h"9. Figure 2 shows that the
components �s

��


��	
and �s

��approx
are equal in magnitude and in general have the largest

percent error. Thus, the percent errors of �s
��


��	

are further detailed in Figure 3 for
di!erent length-to-thickness ratios and uniform damage magnitudes. Figure 3 shows that,
once the maximum frequency range of measured inertance FRF to be used for damage
identi"cation is determined, the accuracy of [�s]




��	
can be improved by reducing the

length-to-thickness ratio of the beam element, in other words, by shortening the beam
element. The approximated perturbed dynamic element sti!ness [�s]




��	
given by

equation (39) is adopted in the present study because it is linear in the e!ective uniform
damage magnitude D and because its accuracy can be readily improved by properly
choosing both the length-to-thickness ratio of the beam element and the maximum
frequency range of measured inertance FRF to be used for damage identi"cation.



Figure 2. Percent errors of the components of [�s]



��	

with respect to those of [�s]
�	
��

for the Bernoulli-Euler
beam element: l/h"9 and D"0)4.

Figure 3. Percent errors of �s
��


��	

with respect to �s
���	
�

for the Bernoulli}Euler beam element depending
on the length-to-thickness ratio (l/h) and uniform damage magnitude (D).
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4. NUMERICAL AND EXPERIMENTAL VERIFICATIONS

4.1. NUMERICALLY SIMULATED TESTS

Before conducting experimental veri"cation, "rst the feasibility of the present SDIM was
evaluated through some numerically simulated damage identi"cation tests. For the
feasibility tests, "rst the pre-speci"ed damages are placed in a beam and then inversely
identi"ed by using the present SDIM. Figure 4 shows the locations and magnitudes of three
piece-wise uniform damages (i.e., D

�
"0)4, D

�
"0)5, and D

�
"0)3) placed on a cantilevered

aluminum beam considered for the feasibility tests. The beam has the length ¸"0)4 m, the
bending sti!ness EI"14)6 Nm�, and the mass density per length �A"0)275 kg/m. The
bending sti!ness and mass density are experimentally measured. In Figure 4, the circle (�)
indicates the location of the excitation point and the crosses (�) indicate the three FRF
measurement points. Analytically predicted FRFs are used for the numerically simulated
damage identi"cation tests, and they are calculated at x"0)133, 0)267, and 0)356 m by
applying a harmonic point force at x"0)133 m.

In real situations, the inertance FRFs required in equation (28) should be experimentally
measured directly from a damaged structure. Thus, in practice, they are liable to be
contaminated by certain measurement noises. Thus, by following the approach used by
Thyagarajan et al. [10], an e% random noise is added to the analytically predicted FRF to
represent the errors in measured FRF data:

A� "A�1#

e

100
�randn�, (40)

where A and A� denote the inertance FRFs before and after the e% random noise is taken
into account, and &&randn'' represents the random noise generator function in MATLAB] .
As done by Thyagarajan et al. [10], it is assumed that the random noise is uniformly
distributed, with the mean"0 and variance"1.

In this study, the accuracy of the predicted damage with respect to the actual value is
evaluated by using the &&damage identi"cation error (DIE)'' de"ned by

DIE,�
1

¸

�
�
�

l
�
(D����

�
!D����j )� , (41)
Figure 4. Cantilevered beam with three piece-wise uniform damages considered for numerically simulated
damage identi"cation tests.



Figure 5. Analytically predicted FRF-data-based damage identi"cation results depending on the number of
"nite elements used in the analysis: 0% random noise in FRF.

FREQUENCY-DOMAIN METHOD OF STRUCTURAL DAMAGE IDENTIFICATION 625
where ¸ is the total length of the beam, and D
�
is the e!ective damage magnitude for the jth

beam element of length l
�
. The superscripts &&¹rue'' and &&Pred'' denote the true and

predicted damages respectively. As the value of DIE becomes smaller, the predicted
damages become closer to the true values.

Figure 5 shows the numerically simulated damage identi"cation results for 0% random
noise in FRF. The beam is divided into nine equal "nite elements at the "rst iteration, and
27 equal "nite elements at the second iteration, and so on. Because three FRFmeasurement
points are chosen for the present example case (see Figure 4), three excitation frequencies
are used to obtain a total of nine equations for the nine "nite elements model at the "rst
iteration (see Figure 5(a))*similarly, nine and 27 excitation frequencies for the 27 and 81
"nite elements models at the second and third iterations (see Figures 5(b) and 5(c))
respectively. How to choose those excitation frequency points may play an important role
for the successful damage identi"cation, which was discussed by the present authors in their
previous work [19]. In the authors' experiences, it is recommended to choose the excitation
frequency points near the resonance peaks in the low-frequency range. As the number of
"nite elements used in the analysis is increased in this way, Figure 5 certainly shows that the
value of DIE decreases and the predicted damages accordingly converge almost to the true
values D

�
"0)4, D

�
"0)5, and D

�
"0)3.

Figure 6 shows the accuracy of damage identi"cation depending on the level of random
noises in FRF. The results in Figure 6 were obtained from the mean values of "ve
simulations conducted for each level of random noise in FRF. As expected, the accuracy of
damage identi"cation falls o! gradually as the level of random noises in FRF increases. The



Figure 6. Analytically predicted FRF-data-based damage identi"cation results depending on the level of
random noises in FRFs.
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present SDIM is found to fairly well locate three pre-speci"ed damages up to about 10%
random noise. If the level of random noises in FRF becomes larger than about 12%, then
the smallest damage D

�
"0)3 cannot be detected well. From Figures 6(e) and 6(d), one may

realize that the damage magnitude di!erence of 0)1 cannot be well quanti"ed if the random
noises in FRF are larger than about 5%. Thus, to successfully quantify small and/or weak
damages as well as to successfully detect and locate them, it is certainly required to acquire
very accurate experimentally measured FRFs.

The advantage of the present SEM-based damage identi"cation method over the
FEM-based methods [7, 10, 12] is investigated by comparing the damage identi"cation
results obtained by the present SEM- and FEM-based methods. The results by the
FEM-based method are obtained from equation (30) by using the approximate dynamic
sti!ness matrix from classical FEM formulation [18]. As an illustrative problem,
a cantilevered beam represented by the 81 equal "nite elements model is considered herein.
Three piece-wise uniform damages (i.e., D

�
"0)4, D

�
"0)5, and D

�
"0)3) are placed on the



TABLE 1

Damage identi,cation results by the present SEM- and FEM-based methods by varying the
length of ,nite elements

Identi"ed damage magnitudes Damage
Length (% errors w.r.t. true damage magnitudes) identi"cation
of error
"nite D

�
D

�
D

�
(DIE�10��)

element
(m) SEM FEM SEM FEM SEM FEM SEM FEM

0)8/81 0)404 0)404 0)510 0)510 0)308 0)308 5)156 5)157
(1)00%) (1)00%) (2)00%) (2)00%) (2)67%) (2)67%)

1)6/81 0)404 0)405 0)512 0)512 0)308 0)309 8)821 8)824
(1)00%) (1)25%) (2)40%) (2)40%) (2)67%) (3)00%)

3)2/81 0)409 0)411 0)486 0)474 0)308 0)315 14)20 21)23
(2)25%) (2)75%) (2)80%) (5)20%) (2)67%) (5)00%)

6)4/81 0)409 0)382 0)515 0)530 0)290 0)271 26)52 51)93
(2)25%) (4)50%) (3)00%) (6)00%) (3)34%) (9)67%)
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14th, 41st, and 68th "nite elements of the beam. First, the accuracy of damage identi"cation
is compared by varying the length of the "nite element. The length of the beam is increased
up to 6)4 m to increase the length of the "nite element. The exact dynamic sti!ness matrix
used in the present SEM-based method keeps exact regardless of the length of the "nite
element. On the other hand, the approximate dynamic sti!ness matrix from classical FEM
formulation becomes less accurate as the length of the "nite element is increased. As a result,
Table 1 shows that the FEM-based method provides relatively poor damage identi"cation
results when compared with the present SEM-based method. Next, the detectability of
small damages is compared by reducing the original magnitudes of damages by 1/N (see
Figure 7) while keeping the length of the cantilevered beam as 0)4 m. It is very clear from
Figure 7 that the present SEM-based method becomes more accurate as the magnitudes of
damages get smaller while the FEM-based method becomes less accurate. These interesting
results come from the following facts: "rst, the dynamic sti!ness matrix used in the present
SEM-based method is exact while that used in the FEM-based method is approximate;
second, the error by the use of the approximated perturbed dynamic element sti!ness matrix
(i.e., equation (39)) in the present SEM-based algorithm becomes small as damage
magnitudes decrease, which can be observed from Figure 3. This implies that the present
SEM-basedmethod can be promisingly applied to identify rather very small damages as far
as very accurate FRF-data can be measured from damaged structures, which will be one of
important advantages of the present SEM-based method over the existing FEM-based
methods.

Though the approximate dynamic sti!ness matrix can be also used in the damage
identi"cation algorithm developed herein (see Table 1 and Figure 7), the use of the exact
dynamic sti!ness matrix is mandatory to get more reliable damage identi"cation results. In
general, it is quite straightforward to formulate the exact dynamic sti!ness matrices for
structures such as beams, frames, and trusses; all consist of one-dimensional structure
elements. However, it is not true for two- and three-dimensional structures [13, 14]. Thus,
the disadvantage of the present SEM-basedmethod will be its applicability that is limited to
structures for which exact dynamic sti!ness matrices are available.



Figure 7. Comparison of damage identi"cation results by the present SEM- and FEM-based methods by
varying the magnitudes of damages.
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Figure 8. Geometry of a cantilevered beam specimen with three slots (units: mm)
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4.2. EXPERIMENTAL TESTS

Figure 8 shows the cantilevered beam specimen used for experiments. The beam is 0)4m
long, 0)02m wide, and 0)005m thick. The mass density and bending sti!ness for the intact
state are obtained by experiments as �A"0)275 kg/m and EI"14)6 Nm� respectively.
The intact beam is damaged by introducing three slots 4)94mm wide and 0)78, 1)03, and
0)56mm deep, i.e., slot A, slot B and slot C in Figure 8. The depths of slot A, slot B, and slot
C are so determined that the corresponding e!ective damages become 0)4, 0)5, and 0)3
respectively. To vibrate the beam specimen, an impulse force is applied to the beam
specimen by the shaker B&K 4810. The impulse signal is generated by the signal analyzer
B&K 2034, and the vibration responses of the beam specimen are measured by using the
accelerometer B&K 4374. To measure the FRF with the highest frequency resolution of the
signal analyzer HP 35670A, the experiment is repeated for three successive frequency
ranges, i.e., "rst from 0 to 1600 Hz, next from 1600 to 3200Hz, and lastly from 3200 to
4800Hz, instead of conducting a single experiment for the whole frequency range of interest
up to 4800Hz.



TABLE 2

Experimentally measured natural frequencies of the beam with damage

Measured natural frequencies (Hz)

Beams 1st 2nd 3rd 4th 5th 6th 7th 8th

Undamaged 25)75 156)9 438)7 859)3 1419 2117 2949 3915
Damaged 25)01 154)2 435)8 838)4 1397 2066 2931 3860
% Decrease 2)87 1)72 0)67 2)43 1)56 2)39 0)58 1)41

Figure 9. Inertance FRFs measured at x"0)133 m (point 1), 0)267 m (point 2), and 0)356 m (point 3) of the
damaged beam by applying an impact load at x"0)133 m (point 1).
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Table 2 compares the natural frequencies of the beam specimen measured before and
after damage. It shows that, in general, the damage (i.e., cuts) tends to lower the natural
frequencies. Figure 8 shows the inertance FRFs of the damaged beam specimenmeasured at
x"0)133 m (point 1), 0)267 m (point 2), and 0)356 m (point 3) by applying an impact load at
x"0)133m (point 1). To investigate the e!ects of damage on the inertance FRF, the
inertance FRFs measured at point 1 before and after damage are compared in Figure 10.
From Figure 10, one may "nd that, in general, the damage tends to shift the resonance
peaks to the lower frequencies as well as to reduce them in magnitude.

Figure 11 shows the damage identi"cation results obtained by using the experimentally
measured inertance FRFs given in Figure 9. One may observe the following. First, as
observed in the numerically simulated damage identi"cation (for instance, see Figure 5), the
e!ective damage magnitudes predicted by using the measured inertance FRFs indeed get
closer to the actual values as the number of "nite elements is increased. Second, when



Figure 10. Comparison of the inertance FRFs at intact and damaged states, all measured at x"0)133 m
(point 1) of the damaged beam by applying an impact load at the same point.

Figure 11. Experimentally measured FRF-data-based damage identi"cation results depending on the number
of "nite elements used in the analysis.
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Figure 12. Experimentally measured FRF-data-based damage identi"cation results depending on the frequency
range of excitation: low 0(�(500 Hz, mid 500(�(1000 Hz, high 1000(�(1500 Hz.
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compared with the case of analytically predicted FRFs with zero random noise (see Figure 5),
the experimentally measured FRFs predict incorrect damage magnitudes even over the
zone without damage. The result in Figure 11(c) is found to be quite similar to that obtained
by assuming 7% random noises in the analytically predicted FRFs, i.e., Figure 6(d). Third,
the present SDIM is found to fairly well locate and quantify three slots.

Figure 12 is given to show the e!ects of the range of excitation frequency on the accuracy
of damage identi"cation. The FRF-data calculated at a total of 27 excitation frequencies are
used to obtain the results shown in Figure 12. The 27 excitation frequencies are chosen
within six di!erent frequency ranges, i.e., the low-frequency range 0(�(500 Hz, the
mid-frequency range 500(�(1000 Hz, the high frequency range 1,000(�(1,500 Hz,
and so forth. Figure 12 shows that the accuracy of damage identi"cation becomes relatively
poor (in other words, DIE has relatively high value) when the FRF-data at high frequencies
are used for damage identi"cation. For the tested beam specimen, the best damage



Figure 13. Experimentally measured FRF-data-based damage identi"cation results depending on the FRF
measurement points.
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identi"cation results are obtained when the FRF-data at both low and mid frequencies are
used.

Figure 13 is given to show the e!ects of FRF measurement points on the accuracy of
damage identi"cation. Comparison is made for four di!erent sets of FRF measurement
points. Each set consists of three FRF measurement points chosen from the area near the
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root of the beam specimen for the "rst set (Figure 13(a)), from the mid area for the second set
(Figure 13(b)), and from the area near the free end (Figure 13(c)). The last set (Figure 13(d))
consists of points each from the areas near the root, mid, and free end of the beam specimen.
Figure 13 shows that the last set provides the best damage prediction in terms of DIE while
the other sets provide relatively poor results. Because the accelerometer is less sensitive in
nature to measure the small vibration near the root, Figure 13(a) shows that the "rst set fails
to successfully locate the damage near the free end. To obtain improved damage
identi"cation results by using the FRFs measured by the accelerometer, the FRF
measurement points should not all be chosen in a narrow area and the points where the
accelerometer will work poorly should not be considered.

5. CONCLUSIONS

Motivated by the advantages of FRF-data and the exact dynamic sti!ness matrix,
a frequency-domain method of structural damage identi"cation is derived from the
dynamic sti!ness equation of motion of a structure and then applied to a beam structure. In
the present SDIM, only the FRF-data measured from the damaged structure are required
as the input data. The feasibility of the present SDIM is evaluated through some
numerically simulated damage identi"cation tests. Experiments are then conducted for the
cantilevered beam with damage caused by introducing three slots of di!erent depths to
verify the present SDIM. It is shown that the present SDIM fairly well locates and
quanti"es the damage (i.e., the three slots) when the experimentally measured FRFs are used
as the input data.
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